Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Rev. cuba. invest. bioméd ; 39(3): e651, jul.-set. 2020. tab
Article in Spanish | LILACS, CUMED | ID: biblio-1138937

ABSTRACT

Introducción: Se han realizado muchas investigaciones sobre los implantes dentales, sin embargo, el área oseointegrable aún es un tema poco tratado en la literatura científica. Objetivo: Diseñar un método para el cálculo del área oseointegrable en la colocación de implantes dentales. Métodos: Las áreas de los implantes se calcularon sobre la base de modelos de implantes de tamaño cuatro veces el real, utilizando las fórmulas conocidas para mantos de cilindro, troncos de cono, círculo (entre otras) y aplicando relaciones lineales para las alturas y para los diámetros al cuadrado (asimilación a teoría de modelos). Se emplearon un calibrador de metales, una lupa y un escalímetro. Los implantes fueron divididos en sectores según su diferente configuración geométrica, la suma de superficies permitió obtener el área total del implante. Las superficies se compararon con el área teórica total de los mismos implantes. Luego se extrapolaron los datos para todos los modelos según sus dimensiones particulares. Resultados: Las áreas obtenidas para implantes tipo tornillo y tipo cónico (diámetro/largo en mm) fueron respectivamente: 3,75/7 = 129 mm2; 3,75/13 = 234 mm2; 3,75/15 = 270 mm2; 4/15 = 306 mm2; 5/7 = 224 mm2 y 3,5/13 = 143 mm2; 4,3/10 = 166 mm2; 4,3/13 = 215 mm2; 4,3/16 = 265 mm2. Conclusiones: La metodología usada en este estudio pareciera ser una buena alternativa para calcular el área final de oseointegración(AU)


Introduction: Many studies have been conducted about dental implants. However, the osseointegration area is a topic not commonly dealt with in the scientific literature. Objective: Design a method to estimate the osseointegration area in the placement of dental implants. Methods: The implant areas were estimated with implant models four times as large as real size, using known formulas for cylinder mantles, cone trunks and circles (among others). Linear relationships were applied for heights and square diameters (assimilation to model theory). Use was made of a metal calibrator, a magnifying glass and a scalimeter. The implants were divided into sectors according to their different geometric configuration. The sum of the surfaces made it possible to obtain the total implant area. The surfaces were compared with the total theoretical area of the same implants. The data were then extrapolated for all the models in keeping with their particular dimensions. Results: The areas obtained for screw and cone implants (diameter / length in mm) were, respectively: 3.75/7 = 129 mm2; 3.75/13 = 234 mm2; 3.75/15 = 270 mm2; 4/15 = 306 mm2; 5/7 = 224 mm2 and 3.5/13 = 143 mm2; 4.3/10 = 166 mm2; 4.3/13 = 215 mm2; 4.3/16 = 265 mm2. Conclusions: The methodology used in the study seems to be a good alternative to estimate the final osseointegration area(AU)


Subject(s)
Humans , Dental Implants/ethics , Osseointegration/physiology
2.
ImplantNewsPerio ; 2(5): 876-884, set.-out. 2017. ilus
Article in Portuguese | LILACS, BBO | ID: biblio-877283

ABSTRACT

Objetivo: avaliar pela análise microbiológica in vitro a capacidade de selamento bacteriano de dois modelos de implante conexão cone-morse e hexágono externo. Material e métodos: foram utilizados 28 implantes osseointegráveis (Colosso Emfils ­ Itu/SP, Brasil) divididos em dois grupos (14 implantes cada), nos quais os componentes protéticos foram parafusados com um torque de 20 Ncm, em um ambiente controlado e após contaminação propositada da parte interna dos implantes por Escherichia coli. As colônias bacterianas foram transportadas por meio de hastes confeccionadas por fios ortodônticos, previamente esterilizadas, e então fixados seus respectivos pilares protéticos. Em seguida, um microbrush umedecido em solução salina a 0,9% estéril foi levemente friccionado na interface da superfície externa implante/conector protético. Cada conjunto implante/componente protético foi imerso em um tubo de ensaio contendo 5 ml de caldo BHI, permanecendo imerso no meio de cultura. As amostras foram monitoradas em relação ao crescimento bacteriano. Resultados: após 14 dias, verificou-se que não houve contaminação em nenhum dos tipos de conexões. Conclusão: a utilização desses implantes já evitaria a contaminação bacteriana nos primeiros dias após a carga imediata, determinando assim o aumento do índice de sucesso desse procedimento.


Objective: to evaluate by in vitro microbiological analysis the bacterial sealing ability of two implant models (Morse cone and external hexagon connections). Material and methods: Twentyeight dental implants (Colosso Emfi ls ­ Itu/SP, Brazil) were divided into two groups (14 implants each) and the prosthetic components screwed with a 20 Ncm torque in a controlled environment and after deliberate contamination of the internal part of the implants by Escherichia coli. The bacterium strain was transported by orthodontic wire loops previously sterilized and then the prosthetic abutments were fastened. After, a microbrush moistened with a 0.9% saline sterile solution was lightly rubbed into the external implant/ prosthetic abutment surface. Each implant/prosthetic assembly was immersed in a test tube containing 5 ml of BHI broth remaining immersed in the culture medium. Samples were monitored for bacterial growth. Results: after 14 days, no contamination was observed in any of the implant connections. Conclusion: the use of these implants would already prevent bacterial contamination in the first days after immediate loading, thus increasing the success rate of this procedure.


Subject(s)
Humans , Environmental Pollution/prevention & control , Dental Implants , Escherichia coli , In Vitro Techniques , Microbiological Techniques/methods
SELECTION OF CITATIONS
SEARCH DETAIL